Information-Disturbance Theorem for Mutually Unbiased Observables
نویسنده
چکیده
We derive a novel version of information-disturbance theorems for mutually unbiased observables. We show that the information gain by Eve inevitably makes the outcomes by Bob in the conjugate basis not only erroneous but random.
منابع مشابه
Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state
The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing m-almost everywhere convergence, where m...
متن کاملConstructing Mutually Unbiased Bases in Dimension Six
The density matrix of a qudit may be reconstructed with optimal efficiency if the expectation values of a specific set of observables are known. In dimension six, the required observables only exist if it is possible to identify six mutually unbiased complex (6 × 6) Hadamard matrices. Prescribing a first Hadamard matrix, we construct all others mutually unbiased to it, using algebraic computati...
متن کامل16 2 v 2 3 0 M ar 2 00 1 A new proof for the existence of mutually unbiased bases ∗
We develop a strong connection between maximally commuting bases of orthogonal unitary matrices and mutually unbiased bases. A necessary condition of the existence of mutually unbiased bases for any finite dimension is obtained. Then a constructive proof of the existence of mutually unbiased bases for dimensions which are power of a prime is presented. It is also proved that in any dimension d ...
متن کاملnt - p h / 01 03 16 2 v 1 2 9 M ar 2 00 1 A new proof for the existence of mutually unbiased bases ∗
We develop a strong connection between maximally commuting bases of orthogonal unitary matrices and mutually unbiased bases. A necessary condition of the existence of mutually unbiased bases for any finite dimension is obtained. Then a constructive proof of the existence of mutually unbiased bases for dimensions which are power of a prime is presented. It is also proved that in any dimension d ...
متن کاملArithmetic, mutually unbiased bases and complementary observables
Complementary observables in quantum mechanics may be viewed as Frobenius structures in a dagger monoidal category, such as the category of finite dimensional Hilbert spaces over the complex numbers. On the other hand, their properties crucially depend on the discrete Fourier transform and its associated quantum torus, requiring only the finite fields that underlie mutually unbiased bases. In a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006